ログイン
ユーザ名:

パスワード:


パスワード紛失

新規登録
Main Menu
Tweet
Facebook
Line
:-?
フラット表示 前のトピック | 次のトピック
投稿者 スレッド
webadm
投稿日時: 2009-9-8 10:37
Webmaster
登録日: 2004-11-7
居住地:
投稿: 3068
【43】半波整流波電流
次ぎの問題も少しひねった半波整流波電流に関するもの。



最大電圧Emで角周波数ωの正弦波電圧源にダイオードと電流計(可動コイル形)に抵抗が直列に接続されている場合に以下のケースそれぞれの電流計の指示を求めよというもの。

(1)ダイオードの電圧降下が0のとき
(2)正方向の電流iとダイオードの電圧降下vとの関係式が次式で表されるとき

v=V0+i*R0 (Vo,R0:定数)

この問題のミソは、電源は正弦波だが、流れる電流は半波整流波でひずみ波である点。また電流計は可動コイル形なので指示値は平均値を意味する点。

第一の設問ではダイオードの電圧降下は無視できるので以前にあったFourier級数展開の問題のように半波整流波電流の平均値を求めればよいことになる。

第二の設問ではダイオードの電圧降下を考慮して回路に流れる半波整流波形から電流の平均値を求める必要がある。

第一のケースで流れる電流の瞬時値は

i=Em*sin(ωt)/R (0≦t≦T/2)
=0 (T/2≦t≦T)

で表される。従って流れる電流の平均値は

Iave=(1/T)∫idt (0≦t≦T)
=(1/T)∫(Em*sin(ωt)/R)dt (0≦t≦T/2)
=(1/T)*(Em*(1/ω-cos((ωT)/2)/ω))/R

ここで

ω=2π/T

を代入すると

Iave=(1/T)*(Em*(T/2π-cos(π)*T/2π))/R
=Em/πR

ということになる。

一方ダイオードの電圧降下を考慮した場合、電源電圧がV0以下の場合には電流は流れず、V0以上の場合、R0がRと直列につながった回路にV0を超えた分の電圧が加わることになる。少々やっかいである。



平均値を求めるためには黒塗りの領域の面積(積分)を求める必要がある。

ストラテジーとしては、ダイオードの順方向閾値電圧(V0)を0とした場合に回路に流れる電流の平均値を求め、それからV0を0以外とした場合に流れなくなる部分の電流の平均値を求めたものを差し引けばよいことになる。

最初にV0=0とした場合の電流は

i=Em*sin(ωt)/(R0+R) (0≦t≦T/2)
=0 (T/2≦t≦T)

で表されその平均値は

Iave0=(1/T)∫(Em*sin(ωt)/(R0+R))dt (0≦t≦T)
=(1/T)∫(Em*sin(ωt)/(R0+R))dt (0≦t≦T/2)
=(1/T)*(Em*(1/ω-cos((ωT)/2)/ω))/(R0+R)

ここで

ω=2π/T

を代入すると

Iave0=(1/T)*(Em*(T/2π-cos(π)*T/2π))/(R0+R)
=Em/π(R0+R)

ということになる。

一方V0≠0とした場合に流れなくなる電流は

i=Em*sin(ωt)/(R0+R) (0≦ωt≦θ)
=V0/(R0+R) (θ≦ωt≦π-θ)
=Em*sin(ωt)/(R0+R) (π-θ≦ωt≦π)
=0 (π≦ωt≦2π)

従ってその平均値は

Iave1=(1/2π)∫(Em*sin(ωt)/(R0+R))dωt (0≦ωt≦θ)
+(1/2π)∫(V0/(R0+R))dωt (θ≦ωt≦π-θ)
+(1/2π)∫(Em*sin(ωt)/(R0+R))dωt (π-θ≦ωt≦π)
=(1/π)*(∫(Em*sin(ωt)/(R0+R))dωt (0≦ωt≦θ)
+∫(V0/(R0+R))dωt) (θ≦ωt≦π/2)
=(1/π)*((Em*(1-cos(θ)))/(R0+R)+((π/2-θ)*V0)/(R0+R))

ここでθに関して以下の関係が成り立つ

Em*sin(θ)=V0

従って

sin(θ)=V0/Em

∴θ=asin(V0/Em)

また

sin(θ)^2+cos(θ)^2=1

なので

(V0/Em)^2+cos(θ)^2=1

∴cos(θ)^2=1-(V0/Em)^2

従って

cos(θ)=sqrt(1-(V0/Em)^2)

ということになる。

これらをそれぞれ代入すると

Iave1=(1/π)*((Em*(1-sqrt(1-(V0/Em)^2)))/(R0+R)+((π/2-asin(V0/Em)*V0)/(R0+R))
=(1/π(R0+R))*((Em-sqrt(Em^2-V0^2))+(π/2-asin(V0/Em))*V0)

ということになる。これをV0=0とした平均値から差し引くと

Iave=Iave0-Iave1
=Em/π(R0+R)-(1/π(R0+R))*((Em-sqrt(Em^2-V0^2))+(π/2-asin(V0/Em))*V0)
=(1/π(R0+R))*(sqrt(Em^2-V0^2)-(π/2-asin(V0/Em))*V0)

ということになる。

著者の解は黒く塗りつぶした部分の積分だけを求めているが、結果は同じである。最終的な式は引き算の形をしているのでこちらの解法のほうが直感的かつ自然であるように思える。
フラット表示 前のトピック | 次のトピック

題名 投稿者 日時
   Fourier変換と波形解析:演習問題 webadm 2009-8-7 11:06
     【1】波形補間 webadm 2009-8-7 12:03
     【2】Fourier係数の式の導出 webadm 2009-8-8 21:17
     【3】半波整流波のFourier級数展開 webadm 2009-8-12 10:08
     【4】ノコギリ波のFourier級数展開 webadm 2009-8-13 8:34
     【5】対称波のFourier係数 webadm 2009-8-14 9:45
     【6】奇関数波のFourier係数 webadm 2009-8-14 10:46
     【7】偶関数波のFourier係数 webadm 2009-8-14 11:12
     【8】奇数次高調波のみの波形 webadm 2009-8-18 9:46
     【9】ノコギリ波のFourier級数展開(その2) webadm 2009-8-19 2:40
     【10】ノコギリ波のFourier級数展開(その3) webadm 2009-8-20 6:58
     【11】台形波のFourier級数展開 webadm 2009-8-20 8:03
     【12】ノコギリ波のFourier級数展開(その4) webadm 2009-8-21 10:15
     【13】ひずみ波の電流 webadm 2009-8-22 7:06
     【14】ひずみ波の実効値 webadm 2009-8-22 11:14
     【15】インダクタンスの補正係数 webadm 2009-8-22 12:02
     【16】キャパシタンスの補正係数 webadm 2009-8-22 20:09
     【17】キャパシタンスの補正係数(その2) webadm 2009-8-22 20:25
     【18】RL直列回路に流れるひずみ波電流の実効値 webadm 2009-8-22 21:07
     【19】ひずみ波の有効電力 webadm 2009-8-22 21:39
     【20】ひずみ波の電力と力率 webadm 2009-8-23 2:47
     【21】RL直列回路とひずみ波の消費電力と力率 webadm 2009-8-23 3:33
     【22】RLC混成回路とひずみ波の電流と消費電力 webadm 2009-8-24 5:52
     【23】方形波のFourier級数展開と波形率、波高率 webadm 2009-8-24 11:05
     【24】キャパシタンスに流れる電流のFourier級数展開 webadm 2009-8-25 10:05
     【25】三角波のFourier級数展開 webadm 2009-8-25 12:59
     【26】方形波のFourier級数展開 webadm 2009-8-25 21:34
     【27】ひずみ波の実効値、電力および力率 webadm 2009-8-26 1:10
     【28】全波整流波電圧のFourier級数展開と波形率、波高率 webadm 2009-8-26 2:16
     【29】全波整流波電圧の負荷電力 webadm 2009-8-26 2:53
     【30】波形の同形性 webadm 2009-8-26 4:04
     【31】RLC混成回路とひずみ波の電流と電力 webadm 2009-8-31 12:27
     【32】ひずみ波のひずみ率 webadm 2009-9-1 9:55
     【33】非線形回路とひずみ波 webadm 2009-9-1 10:14
     【34】リアクタンスに流れるひずみ波電流と電圧のひずみ率 webadm 2009-9-1 10:45
     【35】台形波の波形率と波高率 webadm 2009-9-1 11:38
     【36】ひずみ波の検波値 webadm 2009-9-4 6:37
     【37】RLC直列回路に流れる電流と電圧 webadm 2009-9-5 7:10
     【38】ひずみ波の電流 webadm 2009-9-6 0:16
     【39】ひずみ波とデカップリング回路 webadm 2009-9-6 1:04
     【40】RC並列回路とひずみ波電流 webadm 2009-9-6 5:34
     【41】直流分を含まない偶数波 webadm 2009-9-6 19:57
     【42】ひずみ波とキャパシタンス容量 webadm 2009-9-8 9:29
   » 【43】半波整流波電流 webadm 2009-9-8 10:37
     【44】フローティング充電電流 webadm 2009-9-9 10:46
     【45】ひずみ波とLC並列回路 webadm 2009-9-9 11:50
     【46】RLC直列回路とひずみ波電流 webadm 2009-9-10 7:55
     【47】RLC混成回路のひずみ波電流 webadm 2009-9-10 8:55
     【48】相互誘導回路のひずみ波電流 webadm 2009-9-11 9:35
     【49】三相ひずみ波 webadm 2009-9-12 14:33
     【50】対称三相交流ひずみ波 webadm 2009-9-12 22:05
     【51】対称三相交流ひずみ波(その2) webadm 2009-9-12 22:23
     【52】対称三相交流ひずみ波(その3) webadm 2009-9-12 23:37
     【53】対称三相交流ひずみ波(その4) webadm 2009-9-13 0:08
     【54】対称三相交流ひずみ波(その5) webadm 2009-9-13 3:02
     【55】対称三相交流ひずみ波(その6) webadm 2009-9-13 4:13
     【56】対称三相交流ひずみ波(その7) webadm 2009-9-13 5:32
     【57】Fourier変換公式の導出 webadm 2009-9-18 20:23
     【58】Fourier変換の対称性 webadm 2009-9-22 22:54
     【59】Fourier変換の時間軸の伸縮 webadm 2009-9-22 23:02
     【60】Fourier変換の推移定理 webadm 2009-9-22 23:04
     【61】Fourier変換の微分と積分 webadm 2009-9-22 23:07
     【62】Fourier変換の畳み込み積分 webadm 2009-9-22 23:10
     【63】Fourier級数の振幅及び位相スペクトル webadm 2009-9-22 23:16
     【64】直流、正弦波、余弦波のFourier変換 webadm 2009-9-28 13:49
     【65】方形パルスのFourier変換 webadm 2009-9-30 5:53
     【66】単位ステップ関数のFourier変換 webadm 2009-9-30 9:30
     【67】余弦波バーストのFourier変換 webadm 2009-10-1 10:53
     【68】方形パルス列のFourier変換 webadm 2009-10-1 12:25
     【69】正負対方形波のFourier変換 webadm 2009-10-1 13:04
     【70】三角パルスのFourier変換 webadm 2009-10-1 20:49
     【71】三角パルスによるデルタ関数の近似 webadm 2009-10-1 22:01
     【72】指数関数のFourier変換 webadm 2009-10-2 9:50
     【73】RC直列回路の伝達関数 webadm 2009-10-2 10:25
     【74】理想低域フィルタのインパルス応答 webadm 2009-10-3 6:49
     【75】理想低域フィルタのステップ応答 webadm 2009-10-4 1:11
     【76】既知のインパルス応答から方形パルス応答を求める webadm 2009-10-4 21:30
     【77】ナイキスト−シャノンのサンプリング定理 webadm 2009-10-6 15:37

投稿するにはまず登録を
 
ページ変換(Google Translation)
サイト内検索