ログイン
ユーザ名:

パスワード:


パスワード紛失

新規登録
Main Menu
Tweet
Facebook
Line
:-?
フラット表示 前のトピック | 次のトピック
投稿者 スレッド
webadm
投稿日時: 2009-8-24 5:52
Webmaster
登録日: 2004-11-7
居住地:
投稿: 3087
【22】RLC混成回路とひずみ波の電流と消費電力
次はRC直列回路とRL直列回路が並列に接続された負荷へ以下のひずみ波電圧を加えた場合の全体を流れる電流の実効値と消費電力を求める問題。

e=80√2*sin(ωt)+30√2*cos(3ωt+30°)-10√2*sin(5ωt-40°)



この場合負荷回路全体を合成インピーダンスZとみなして線形回路の重ね合わせによって基本波、高調波それぞれを単独電源とした場合、消費電力は

Pa=|E1||I1|cosφ1+|E3||I3|cosφ3+|E5||I5|cosφ5

として求めることができる。

また同様に全体を流れる電流の実効値も基本波、高調波それぞれ単独電源とした場合に合成インピーダンスZに流れる電流の実効値から

|I|=sqrt(|I1|^2+|I3|^2+|I5|^2)

として求めることができる。

やってみよう。

基本波、高調波に関する電圧の実効値はそれぞれ

|E1|=80√2/√2=80 [V]
|E3|=30√2/√2=30 [V]
|E5|=10√2/√2=10 [V]

基本波に対する合成インピーダンスは

Z1=1/(1/(R1-j/ωC)+1/(R2+jωL)))
=1/((R1+j/ωC)/(R1^2+(1/ωC)^2)+(R2-jωL)/(R2^2+(ωL)^2))
=1/(R1/(R1^2+(1/ωC)^2)+R2/(R2^2+(ωL)^2)+j((1/ωC)/(R1^2+(1/ωC)^2)-(ωL)/(R2^2+(ωL)^2)))

合成インピーダンスの絶対値は

|Z1|=1/sqrt((R1/(R1^2+(1/ωC)^2)+R2/(R2^2+(ωL)^2))^2+((1/ωC)/(R1^2+(1/ωC)^2)-(ωL)/(R2^2+(ωL)^2))^2)
=1/sqrt((5/(5^2+15^2)+10/(10^2+2^2))^2+(15/(5^2+15^2)-2/(10^2+2^2))^2)
=1/sqrt((5/(25+225)+10/(100+4))^2+(15/(25+225)-2/(100+4))^2)
=1/sqrt((5/250+10/104)^2+(15/250-2/104)^2)
=1/sqrt((1/50+5/52)^2+(3/50-1/52)^2)
=1/sqrt(((52+50*5)/(50*52))^2+((156-50)/(50*52))^2)
=1/sqrt((302/2600)^2+(106/2600)^2)
=1/sqrt((151/1300)^2+(53/1300)^2)
=1300/sqrt(151^2+53^2)
=1300/sqrt(25610)
=8.123 [Ω]

従って基本波に関する電流の実効値は

|I1|=|E1|/|Z1|=80/8.123=9.85 [A]

同様に各高調波についても

Z3=1/(1/(R1-j/3ωC)+1/(R2+j3ωL)))
=1/((R1+j/3ωC)/(R1^2+(1/3ωC)^2)+(R2-j3ωL)/(R2^2+(3ωL)^2))
=1/(R1/(R1^2+(1/3ωC)^2)+R2/(R2^2+(3ωL)^2)+j((1/3ωC)/(R1^2+(1/3ωC)^2)-(3ωL)/(R2^2+(3ωL)^2)))

|Z3|=1/sqrt((R1/(R1^2+(1/3ωC)^2)+R2/(R2^2+(3ωL)^2))^2+((1/3ωC)/(R1^2+(1/3ωC)^2)-(3ωL)/(R2^2+(3ωL)^2))^2)
=1/sqrt((5/(5^2+15^2/9)+10/(10^2+9*2^2))^2+((15/3)/(5^2+15^2/9)-3*2/(10^2+9*2^2))^2)
=1/sqrt((5/(25+225/9)+10/(100+36))^2+(5/(25+225/9)-6/(100+36))^2)
=1/sqrt((1/10+5/68)^2+(1/10-3/68)^2)
=1/sqrt((68+50)/(10*68))^2+((68-30)/(10*68))^2)
=1/sqrt((118/680)^2+(38/680)^2)
=680/sqrt(118^1+38^2)
=340/sqrt(3842)
=5.48 [Ω]

|I3|=|E3|/|Z3|=30/5.48=5.47 [A]

Z5=1/(1/(R1-j/5ωC)+1/(R2+j5ωL)))
=1/((R1+j/5ωC)/(R1^2+(1/5ωC)^2)+(R2-j5ωL)/(R2^2+(5ωL)^2))
=1/(R1/(R1^2+(1/5ωC)^2)+R2/(R2^2+(5ωL)^2)+j((1/5ωC)/(R1^2+(1/5ωC)^2)-(5ωL)/(R2^2+(5ωL)^2)))

|Z5|=1/sqrt((R1/(R1^2+(1/5ωC)^2)+R2/(R2^2+(5ωL)^2))^2+((1/5ωC)/(R1^2+(1/5ωC)^2)-(5ωL)/(R2^2+(5ωL)^2))^2)
=1/sqrt((5/(5^2+15^2/25)+10/(10^2+25*2^2))^2+((15/5)/(5^2+15^2/25)-5*2/(10^2+25*2^2))^2)
=1/sqrt((5/(25+225/25)+10/(100+100))^2+(3/(25+225/25)-10/(100+100))^2)
=1/sqrt((5/34+1/20)^2+(3/34-1/20)^2)
=1/sqrt((5*20+34)/(34*20))^2+((3*20-34)/(34*20))^2)
=1/sqrt(134/680)^2+(26/680)^2)
=680/sqrt(134^2+26^2)
=340/sqrt(4658)
=4.98 [Ω]

|I5|=|E5|/|Z5|=10/4.98=2.01 [A]

ということになる。

従って回路全体を流れるひずみ波の電流実効値は

|I|=sqrt(|I1|^2+|I3|^2+|I5|^2)
=sqrt(9.85^2+5.47^2+(-2.01)^2)
=11.4 [A]

ということになる。

また消費電力を求めるために、基本波、高調波それぞれに対する力率を求める必要がある。それは各合成インピーダンスの偏角から

cosφ1=Real(Z1)/|Z1|
=((R2/(R2^2+(ωL)^2)+R1/(R1^2+(1/ωC)^2))/((R2/(R2^2+(ωL)^2)+R1/(R1^2+(1/ωC)^2))^2+((1/ωC)/(R1^2+(1/ωC)^2)-ωL/(R2^2+(ωL)^2))^2))/(1/sqrt((R1/(R1^2+(1/ωC)^2)+R2/(R2^2+(ωL)^2))^2+((1/ωC)/(R1^2+(1/ωC)^2)-(ωL)/(R2^2+(ωL)^2))^2))
=(R2/(R2^2+(ωL)^2)+R1/(R1^2+(1/ωC)^2))/sqrt((R2/(R2^2+(ωL)^2)+R1/(R1^2+(1/ωC)^2))^2+((1/ωC)/(R1^2+(1/ωC)^2)-ωL/(R2^2+(ωL)^2))^2)
=(10/(10^2+2^2)+5/(5^2+15^2))/sqrt((10/(10^2+2^2)+5/(5^2+15^2))^2+(15/(5^2+15^2)-2/(10^2+2^2))^2)
=(10/104+5/250)/sqrt((10/104+5/250)^2+(15/250-2/104)^2)
=(151/1300)/sqrt((151/1300)^2+(53/1300)^2)
=151/sqrt(151^2+53^2)
=151/sqrt(25610)
=0.943

cosφ3=Real(Z3)/|Z3|
=((R2/(R2^2+(3ωL)^2)+R1/(R1^2+(1/3ωC)^2))/((R2/(R2^2+(3ωL)^2)+R1/(R1^2+(1/3ωC)^2))^2+((1/3ωC)/(R1^2+(1/3ωC)^2)-3ωL/(R2^2+(3ωL)^2))^2))/(1/sqrt((R1/(R1^2+(1/3ωC)^2)+R2/(R2^2+(3ωL)^2))^2+((1/3ωC)/(R1^2+(1/3ωC)^2)-(3ωL)/(R2^2+(3ωL)^2))^2))
=(R2/(R2^2+(3ωL)^2)+R1/(R1^2+(1/3ωC)^2))/sqrt((R2/(R2^2+(3ωL)^2)+R1/(R1^2+(1/3ωC)^2))^2+((1/3ωC)/(R1^2+(1/3ωC)^2)-3ωL/(R2^2+(3ωL)^2))^2)
=(10/(10^2+9*2^2)+5/(5^2+15^2/9))/sqrt((10/(10^2+9*2^2)+5/(5^2+15^2/9))^2+((15/3)/(5^2+15^2/9)-3*2/(10^2+9*2^2))^2)
=(10/136+5/50)/sqrt((10/136+5/50)^2+(5/50-6/136)^2)
=(59/340)/sqrt((59/340)^2+(19/340)^2)
=59/sqrt(59^2+19^2)
=59/sqrt(3842)
=0.952


cosφ5=Real(Z5)/|Z5|
=((R2/(R2^2+(5ωL)^2)+R1/(R1^2+(1/5ωC)^2))/((R2/(R2^2+(5ωL)^2)+R1/(R1^2+(1/5ωC)^2))^2+((1/5ωC)/(R1^2+(1/5ωC)^2)-5ωL/(R2^2+(5ωL)^2))^2))/(1/sqrt((R1/(R1^2+(1/5ωC)^2)+R2/(R2^2+(5ωL)^2))^2+((1/5ωC)/(R1^2+(1/5ωC)^2)-(5ωL)/(R2^2+(5ωL)^2))^2))
=(R2/(R2^2+(5ωL)^2)+R1/(R1^2+(1/5ωC)^2))/sqrt((R2/(R2^2+(5ωL)^2)+R1/(R1^2+(1/5ωC)^2))^2+((1/5ωC)/(R1^2+(1/5ωC)^2)-5ωL/(R2^2+(5ωL)^2))^2)
=(10/(10^2+25*2^2)+5/(5^2+15^2/25))/sqrt((10/(10^2+25*2^2)+5/(5^2+15^2/25))^2+((15/5)/(5^2+15^2/25)-5*2/(10^2+25*2^2))^2)
=(10/200+5/34)/sqrt((10/200+5/34)^2+(3/34-10/200)^2)
=(67/340)/sqrt((67/340)^2+(13/340)^2)
=67/sqrt(67^2+13^2)
=67/sqrt(4658)
=0.982

ということになる。

従って消費電力は

Pa=|E1||I1|cosφ1+|E3||I3|cosφ2+|E5||I5|cosφ3
=80*9.85*0.943+30*5.47*0.952+10*2.01*0.982
=919.05 [W]

ということになる。

ちなみに著者は回路の複素アドミタンスを使って、複素電流値を求め、それをフェーザ表記で実効値と偏角を算出している。また電流の瞬時値の式も導いているが、電流の実効値と消費電力を求めるには必ずしもその必要はない。

また著者は力率を求める際に決定的な過ちを犯している。

合成アドミッタンスの偏角と電圧の瞬時値の位相から電流の瞬時値の位相を求めたまでは良いが、力率を電流の位相から求めているがこれは明らかな間違いである。理論のときに学んだ公式を導く過程でも、電圧の位相は電流に含まれる位相分でキャンセルされ負荷の偏角のみが有効電力を左右することになるからである。

これを証明するために、著者が導きだした電流の瞬時値の式と題意の電圧の瞬時値の式から有効電力の式を導いてみよう。

e=80√2*sin(ωt)+30√2*cos(3ωt+30°)-10√2*sin(5ωt-40°)

i=9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ωt+47.8°)-2.01√2*sin(5ωt-29.1°)

瞬時値電力は

p=e*i
=(80√2*sin(ωt)+30√2*cos(3ωt+30°)-10√2*sin(5ωt-40°))*(9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ωt+47.8°)-2.01√2*sin(5ωt-29.1°))
=80√2*9.84√2*sin(ωt)*sin(ωt+19.4°)+30√2*5.48√2*cos(3ωt+30°)*cos(3ωt+47.8°)+10√2*2.01√2*cos(5ωt-40°)*sin(5ωt-40°)*sin(5ωt-29.1°)+80√2*sin(ωt)*(5.48√2*cos(3ωt+47.8°)-2.01√2*sin(5ωt-29.1°))+30√2*cos(3ωt+30°)*(9.84√2*sin(ωt+19.4°)-2.01√2*sin(5ωt-29.1°))-10√2*sin(5ωt-40°)*(9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ω+47.8°))

有効電力は瞬時値電力の平均なので

Pa=(1/T)∫pdt
=(1/T)∫(80√2*9.84√2*sin(ωt)*sin(ωt+19.4°)+30√2*5.48√2*cos(3ωt+30°)*cos(3ωt+47.8°)+10√2*2.01√2*sin(5ωt-40°)*sin(5ωt-29.1°)+80√2*sin(ωt)*(5.48√2*cos(3ωt+47.8°)-2.01√2*sin(5ωt-29.1°))+30√2*cos(3ωt+30°)*(9.84√2*sin(ωt+19.4°)-2.01√2*sin(5ωt-29.1°))-10√2*sin(5ωt-40°)*(9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ω+47.8°)))dt
=(1/T)*(80√2*9.84√2∫sin(ωt)*sin(ωt+19.4°)dt+30√2*5.48√2∫cos(3ωt+30°)*cos(3ωt+47.8°)dt+10√2*2.01√2∫sin(5ωt-40°)*sin(5ωt-29.1°)dt)
=(1/T)*(80*9.84*2∫(cos(-19.4°)/2-cos(2ωt+19.4°)/2)dt+30*5.48*2∫(cos(-17.8°)/2+cos(6ωt+77.8°)/2)dt+10*2.01*2∫(cos(-10.9°)/2-cos(10ωt-69.1°)/2)dt)
=80.9.84*cos(19.4°)+30*5.48*cos(17.8°)+10*2.01*cos(10.9°)
=80.9.84*0.943+30*5.48*0.952+10*2.01*0.982
=918.57 [W]

ということになる。著者の電流実効値とは小数点以下2桁目が違うのでこちらの計算結果にわずかな違いが出ているが基本的にはあっている。一方著者の解は明らかに間違いであることが証明された。

またこの検証過程で著者の電流の瞬時値の式操作の過程に誤りがあるのを発見したので、上記の検証ではそれは訂正したものを使用している。

著者は電流の瞬時値の式を

i=9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ωt+30°+17.8°)-2.01√2*sin(5ωt-40°+10.9°)
=9.84√2*sin(ωt+19.4°)+5.48√2*cos(3ωt+47.8°)-2.01*sin(5ωt-29.1°)

としているが、最後に2.01√2を転記する際に√2が消えてしまっている。

また良く見ると消費電力の計算式にも転記ミスと思われるものがある。

Pa=|E1||I1|cosφ1+|E3||I3|cosφ3+|E5||I5|cosφ5
=80*9.64*cos(19.4°)+30*5.51*cos(47.8°)+10*2.01*cos(29.1°)

とあるが、|I3|が5.51ということになっているが、瞬時値電流の式では5.48とあるので明らかに誤記である。

今まで見て来た中で解き方からして間違っているというのはなかったのと、転記ミスとはいえ誤記が多いのはちょっとひどすぎる。

フラット表示 前のトピック | 次のトピック

題名 投稿者 日時
   Fourier変換と波形解析:演習問題 webadm 2009-8-7 11:06
     【1】波形補間 webadm 2009-8-7 12:03
     【2】Fourier係数の式の導出 webadm 2009-8-8 21:17
     【3】半波整流波のFourier級数展開 webadm 2009-8-12 10:08
     【4】ノコギリ波のFourier級数展開 webadm 2009-8-13 8:34
     【5】対称波のFourier係数 webadm 2009-8-14 9:45
     【6】奇関数波のFourier係数 webadm 2009-8-14 10:46
     【7】偶関数波のFourier係数 webadm 2009-8-14 11:12
     【8】奇数次高調波のみの波形 webadm 2009-8-18 9:46
     【9】ノコギリ波のFourier級数展開(その2) webadm 2009-8-19 2:40
     【10】ノコギリ波のFourier級数展開(その3) webadm 2009-8-20 6:58
     【11】台形波のFourier級数展開 webadm 2009-8-20 8:03
     【12】ノコギリ波のFourier級数展開(その4) webadm 2009-8-21 10:15
     【13】ひずみ波の電流 webadm 2009-8-22 7:06
     【14】ひずみ波の実効値 webadm 2009-8-22 11:14
     【15】インダクタンスの補正係数 webadm 2009-8-22 12:02
     【16】キャパシタンスの補正係数 webadm 2009-8-22 20:09
     【17】キャパシタンスの補正係数(その2) webadm 2009-8-22 20:25
     【18】RL直列回路に流れるひずみ波電流の実効値 webadm 2009-8-22 21:07
     【19】ひずみ波の有効電力 webadm 2009-8-22 21:39
     【20】ひずみ波の電力と力率 webadm 2009-8-23 2:47
     【21】RL直列回路とひずみ波の消費電力と力率 webadm 2009-8-23 3:33
   » 【22】RLC混成回路とひずみ波の電流と消費電力 webadm 2009-8-24 5:52
     【23】方形波のFourier級数展開と波形率、波高率 webadm 2009-8-24 11:05
     【24】キャパシタンスに流れる電流のFourier級数展開 webadm 2009-8-25 10:05
     【25】三角波のFourier級数展開 webadm 2009-8-25 12:59
     【26】方形波のFourier級数展開 webadm 2009-8-25 21:34
     【27】ひずみ波の実効値、電力および力率 webadm 2009-8-26 1:10
     【28】全波整流波電圧のFourier級数展開と波形率、波高率 webadm 2009-8-26 2:16
     【29】全波整流波電圧の負荷電力 webadm 2009-8-26 2:53
     【30】波形の同形性 webadm 2009-8-26 4:04
     【31】RLC混成回路とひずみ波の電流と電力 webadm 2009-8-31 12:27
     【32】ひずみ波のひずみ率 webadm 2009-9-1 9:55
     【33】非線形回路とひずみ波 webadm 2009-9-1 10:14
     【34】リアクタンスに流れるひずみ波電流と電圧のひずみ率 webadm 2009-9-1 10:45
     【35】台形波の波形率と波高率 webadm 2009-9-1 11:38
     【36】ひずみ波の検波値 webadm 2009-9-4 6:37
     【37】RLC直列回路に流れる電流と電圧 webadm 2009-9-5 7:10
     【38】ひずみ波の電流 webadm 2009-9-6 0:16
     【39】ひずみ波とデカップリング回路 webadm 2009-9-6 1:04
     【40】RC並列回路とひずみ波電流 webadm 2009-9-6 5:34
     【41】直流分を含まない偶数波 webadm 2009-9-6 19:57
     【42】ひずみ波とキャパシタンス容量 webadm 2009-9-8 9:29
     【43】半波整流波電流 webadm 2009-9-8 10:37
     【44】フローティング充電電流 webadm 2009-9-9 10:46
     【45】ひずみ波とLC並列回路 webadm 2009-9-9 11:50
     【46】RLC直列回路とひずみ波電流 webadm 2009-9-10 7:55
     【47】RLC混成回路のひずみ波電流 webadm 2009-9-10 8:55
     【48】相互誘導回路のひずみ波電流 webadm 2009-9-11 9:35
     【49】三相ひずみ波 webadm 2009-9-12 14:33
     【50】対称三相交流ひずみ波 webadm 2009-9-12 22:05
     【51】対称三相交流ひずみ波(その2) webadm 2009-9-12 22:23
     【52】対称三相交流ひずみ波(その3) webadm 2009-9-12 23:37
     【53】対称三相交流ひずみ波(その4) webadm 2009-9-13 0:08
     【54】対称三相交流ひずみ波(その5) webadm 2009-9-13 3:02
     【55】対称三相交流ひずみ波(その6) webadm 2009-9-13 4:13
     【56】対称三相交流ひずみ波(その7) webadm 2009-9-13 5:32
     【57】Fourier変換公式の導出 webadm 2009-9-18 20:23
     【58】Fourier変換の対称性 webadm 2009-9-22 22:54
     【59】Fourier変換の時間軸の伸縮 webadm 2009-9-22 23:02
     【60】Fourier変換の推移定理 webadm 2009-9-22 23:04
     【61】Fourier変換の微分と積分 webadm 2009-9-22 23:07
     【62】Fourier変換の畳み込み積分 webadm 2009-9-22 23:10
     【63】Fourier級数の振幅及び位相スペクトル webadm 2009-9-22 23:16
     【64】直流、正弦波、余弦波のFourier変換 webadm 2009-9-28 13:49
     【65】方形パルスのFourier変換 webadm 2009-9-30 5:53
     【66】単位ステップ関数のFourier変換 webadm 2009-9-30 9:30
     【67】余弦波バーストのFourier変換 webadm 2009-10-1 10:53
     【68】方形パルス列のFourier変換 webadm 2009-10-1 12:25
     【69】正負対方形波のFourier変換 webadm 2009-10-1 13:04
     【70】三角パルスのFourier変換 webadm 2009-10-1 20:49
     【71】三角パルスによるデルタ関数の近似 webadm 2009-10-1 22:01
     【72】指数関数のFourier変換 webadm 2009-10-2 9:50
     【73】RC直列回路の伝達関数 webadm 2009-10-2 10:25
     【74】理想低域フィルタのインパルス応答 webadm 2009-10-3 6:49
     【75】理想低域フィルタのステップ応答 webadm 2009-10-4 1:11
     【76】既知のインパルス応答から方形パルス応答を求める webadm 2009-10-4 21:30
     【77】ナイキスト−シャノンのサンプリング定理 webadm 2009-10-6 15:37

投稿するにはまず登録を
 
ページ変換(Google Translation)
サイト内検索