フラット表示 | 前のトピック | 次のトピック |
投稿者 | スレッド |
---|---|
webadm | 投稿日時: 2012-5-7 2:09 |
Webmaster 登録日: 2004-11-7 居住地: 投稿: 3107 |
RLC直並列回路 前問で基本的なRLC素子の組み合わせの回路はお終いで、これからはその応用というか直並列混成回路の問題。
図の回路に直流電圧Eを加えるとき、回路に流れる電流が非振動的となるような抵抗Rの臨界値を求めよ。ただし、抵抗Rが無限大のときの過渡電流は振動的であるものとする。 というもの。 RL直列回路とRC並列回路がシリーズ接続された回路に電源電圧Eがステップ入力されると考えることができる。 以下の関係が成り立つ これをHeaviside演算子とベクトルで書き直すと これを演算子法で解くと ということになる。 従って題意の非振動的となる臨界値のRは以下の条件を満足する必要がある ということになる。この式から2箇所存在することになる。 またC,R,L,rはそれぞれ正の実数であり、Rは無限大であってはならないことから第二の式には更に以下の条件が加わる 従って最終的なRの条件は ということになる。2つめの解は括弧内の条件を満たす場合のみ存在する。 具体的な例としてr=C=L=1の場合には最初の解のみ存在し、r=C=1,L<1/4とした場合には2つの解が存在することになる。 残念なことに著者はRの解を求める際にRの多項式の一次項の係数が負なのを見落としており、まったくとんちんかんな結論を導きだしてしまっている。それがなければ、分子と分母が約分できる式になって上記の様な結果になるはずだった。 P.S 過減衰、臨界減衰、不足減衰を判定する判別式を幾何学的にとらえると面白い。r,C,L,Rの4変数関数であり、その零点が臨界減衰条件となる。簡単にr=C=1,L=1/5としてRを正の範囲で変化させると、2つの零点があるのを確かめることができる。Rが0に近い方の点は関数値の変化が急峻でMaximaでは実軸と交わるあたりをプロットすることができない。臨界減衰点は不足減衰領域と紙一重である。0から遠い点は幾分なだらかで零点の存在が確認できる。後者は第二の解である。4変数の組み合わせによって無数に臨界減衰点が存在すると思われるが、それを計算で求めるのは容易ではないことはすぐわかる。 |
フラット表示 | 前のトピック | 次のトピック |
題名 | 投稿者 | 日時 |
---|---|---|
過渡現象演習問題 | webadm | 2011-11-1 17:19 |
RL直列回路 | webadm | 2011-11-1 17:32 |
続:RL直列回路 | webadm | 2011-11-3 5:24 |
続々:RL直列回路 | webadm | 2011-11-3 6:23 |
まだまだ:RL直列回路 | webadm | 2011-11-3 8:44 |
もうひとつの:RL直列回路 | webadm | 2011-11-3 15:53 |
またまた:RL直列回路 | webadm | 2011-11-3 16:32 |
断続部の有るRL直列回路 | webadm | 2011-11-4 1:09 |
続:断続部の有るRL直列回路 | webadm | 2011-11-4 2:29 |
RL並列回路 | webadm | 2011-11-4 7:48 |
続々:断続部の有るRL直列回路 | webadm | 2011-11-5 10:47 |
まだまだ:断続部の有るRL直列回路 | webadm | 2011-11-5 20:42 |
もうひとつの:断続部の有るRL直列回路 | webadm | 2011-11-6 1:32 |
またしても:RL直列回路 | webadm | 2011-11-6 2:44 |
鎖交磁束不変の理 | webadm | 2011-11-6 6:17 |
続:鎖交磁束不変の理 | webadm | 2011-11-8 5:08 |
続々:鎖交磁束不変の理 | webadm | 2011-11-8 7:42 |
またひとつの:RL直列回路 | webadm | 2011-11-10 7:26 |
RL直並列回路 | webadm | 2011-12-29 5:39 |
相互誘導回路 | webadm | 2012-1-11 8:53 |
続:相互誘導回路 | webadm | 2012-1-11 10:52 |
続々:相互誘導回路 | webadm | 2012-1-14 21:44 |
まだまだ:相互誘導回路 | webadm | 2012-1-22 3:04 |
RC直列回路 | webadm | 2012-1-22 23:50 |
続:RC直列回路 | webadm | 2012-1-23 1:37 |
続々:RC直列回路 | webadm | 2012-1-23 4:15 |
まだまだ:RC直列回路 | webadm | 2012-1-24 9:31 |
もうひとつの:RC直列回路 | webadm | 2012-1-27 7:27 |
またまた:RC直列回路 | webadm | 2012-1-29 0:18 |
電荷量不変の理 | webadm | 2012-1-29 0:45 |
続:電荷量不変の理 | webadm | 2012-2-4 9:41 |
断続部のあるRC直列回路 | webadm | 2012-2-7 6:22 |
続:断続部のあるRC直列回路 | webadm | 2012-2-10 9:18 |
続々:断続部のあるRC直列回路 | webadm | 2012-2-12 20:06 |
まだまだ:断続部のあるRC直列回路 | webadm | 2012-2-12 23:06 |
もうひとつの:断続部のあるRC直列回路 | webadm | 2012-2-14 7:38 |
RC並列回路 | webadm | 2012-2-14 8:48 |
続:RC並列回路 | webadm | 2012-4-5 10:59 |
LC直列回路 | webadm | 2012-4-10 8:07 |
続:LC直列回路 | webadm | 2012-4-11 15:26 |
続々:LC直列回路 | webadm | 2012-4-14 6:36 |
まだまだ:LC直列回路 | webadm | 2012-4-14 17:43 |
LC並列回路 | webadm | 2012-4-15 0:24 |
断続部のあるLC並列回路 | webadm | 2012-4-16 3:54 |
続:断続部のあるLC並列回路 | webadm | 2012-4-17 9:05 |
断続部のあるブリッジ回路 | webadm | 2012-5-5 18:09 |
RLC直列回路 | webadm | 2012-5-5 23:12 |
続:RLC直列回路 | webadm | 2012-5-6 19:26 |
続々:RLC直列回路 | webadm | 2012-5-6 19:53 |
まだまた:RLC直列回路 | webadm | 2012-5-6 21:41 |
» RLC直並列回路 | webadm | 2012-5-7 2:09 |
続:RLC直並列回路 | webadm | 2012-5-8 8:31 |
続々:RLC直並列回路 | webadm | 2012-5-12 18:14 |
RL直列回路(交流入力) | webadm | 2012-5-13 1:37 |
続:RL直列回路(交流入力) | webadm | 2012-5-13 22:24 |
続々:RL直列回路(交流入力) | webadm | 2012-5-13 23:03 |
RC直列回路(交流入力) | webadm | 2012-5-14 8:11 |
LC直列回路(交流入力) | webadm | 2012-5-19 19:10 |
RLC直列回路(交流入力) | webadm | 2012-5-23 4:47 |
RL直並列回路(交流入力) | webadm | 2012-5-28 23:28 |
相互誘導回路 | webadm | 2012-8-3 7:14 |
続:相互誘導回路 | webadm | 2012-8-4 23:52 |
続々:相互誘導回路 | webadm | 2012-8-5 2:55 |
線型性 | webadm | 2012-8-6 21:08 |
非線型素子回路 | webadm | 2012-8-8 7:41 |
微分回路 | webadm | 2012-8-8 9:30 |
積分回路 | webadm | 2012-8-11 20:51 |
パルス回路 | webadm | 2012-8-11 22:35 |
交流ブリッジ回路 | webadm | 2012-8-11 23:00 |
最後のRL直列回路 | webadm | 2012-8-12 3:28 |
投稿するにはまず登録を | |